Cochlear Implants

Articles on a range of related topics
Selecting each title opens a new page
Music and Implants
Stories Aust/Nz
Stories - Overseas
Technology-Implants
Technology-Medical/Hearing Loss
Personal Stories

 
 
 

Frequently Asked Questions

Articles on a range of related topics
Selecting each title opens a new page

Frequently Asked Questions
- Hearing Aids
- Implants
- Maintenance
- Medical
- Miscellaneous

 
 

General Articles

Articles on a wide variety of topics.
Selecting each title opens a new page
General Interest

Meeting Transcripts
Some meetings have transcriptions. As they become available, they will be posted here.

Oct 2020 

News - The University of Sydney

A School of Biomedical Engineering researcher has analysed the accuracy of predictions for cochlear implant outcomes, with a view to further improve their performance in noisy environments.

Dr Greg WatkinsDr. Greg Watkins recently completed his Ph.D. on cochlear implants

University of Sydney School of Biomedical Engineering researcher, Dr Greg Watkins, hears with the assistance of two cochlear implants after experiencing profound deafness in both ears following a 30-year career as an electrical engineer. Despite his profound deafness, with the help of his cochlear implant, he has been able to complete a PhD in biomedical engineering.

Dr Watkins’ desire to help others living with deafness, his personal experience, and career in engineering, motivated him to research cochlear implants.

Now, his new paper has analysed the accuracy of predictions for cochlear implant outcomes with a view to further improving their performance in environments with lots of background noise.  Published in Ear and Hearing, the paper presents a new method for the prediction of speech perception for individual recipients, providing a methodology that could make patient trials more efficient, potentially leading to implants that are personalised to an individual’s listening capability. 

“My hearing deteriorated over a number of years and even with powerful hearing aids I had great difficulty having a conversation,” said Dr Watkins, who received his doctorate earlier this month.

"Cochlear implants have helped to restore my hearing and stay connected socially and professionally.”

Cochlear implants often provide near-perfect speech perception in quiet conditions, but hearing can still be improved in noisy environments, like in cafés or near traffic, compared to having no hearing loss.  “Evaluation of new sound processing ideas and testing them on recipients is a lengthy process. We have developed a metric which reliably predicts cochlear implant speech intelligibility in a range of conditions, allowing for more sound processing ideas to be tested.  

We took existing hearing test results for cochlear implant recipients and, using the output signal to noise ratio (OSNR) metric, accurately predicted how well they would hear in a range of quite different listening conditions. Potentially, this metric could be used to develop configurations which are customised to an individual recipient’s unique hearing capabilities."

The study was conducted under the supervision of Head of School of Biomedical Engineering, Professor Gregg Suaning and Dr Brett Swanson, a researcher at Cochlear Ltd.  Professor Suaning said the research could lead to better outcomes for implant recipients.  “Cochlear implants are already extraordinary devices and have transformed the lives of hundreds of thousands of people world-wide. Despite their successes, there remain areas such as the cochlear implant’s performance in noisy environments where a personalised approach in taking the sound from the environment and translating that into electrical stimulation could conceivably make a world of difference."

Dr Swanson said Dr Watkins’ research could reduce the amount of time needed to test the viability of new cochlear implant algorithms.  “A cochlear implant stimulates the auditory nerve directly, so if you’re a researcher with normal hearing, you can’t listen to it yourself,” said Dr Swanson. "Instead, we rely on dedicated volunteers with cochlear implants who spend hours in sound-proof rooms listening to sentences in noise and telling us what they hear. It is vital work, but mentally draining.

"This research has the potential to drastically reduce the amount of time that we need from our volunteers."

The study was conducted as a retrospective analysis of existing clinical data sets. Each data set contained hearing test results of cochlear implant recipients in several test conditions.  The test condition closest to the recipient’s “everyday” listening condition was taken as a reference and the scores in that condition mapped to a prediction metric, the Output Signal to Noise Ratio (OSNR).  

The OSNR was then calculated in other listening conditions and combined with the reference speech scores to predict the intelligibility that would be achieved for an individual recipient. The predicted scores were compared to the clinical scores and had a high accuracy.    

Dr Watkins is currently evaluating extensions of the OSNR metric to determine whether even more accurate predictions are feasible and hopes to work with a manufacturer to develop a more accurate sound processing system. 

Become a Member

Become a Cicada member
For only A$10 for life, you will receive a copy of Buzz magazine and can attend events.

Latest News

VCNT - Visitors

Today 372

Yesterday 1666

Week 3386

Month 2038

All 151296

Currently are 30 guests and no members online

Kubik-Rubik Joomla! Extensions

Deafblindness

Here is a link to Deafblindness support and information.
They are based in Western Australia and supported by Senses Australia.

Hear For You logo

 

 

 

Hear For You web site

Vision Statement: “For all young people who
are deaf to reach their potential in life.”

Go to top
JSN Boot template designed by JoomlaShine.com
Web Analytics