June 2020 PubMed

Heteroplasmic mitochondrial DNA (mtDNA) defects are an important cause of neurological disease. Although hearing impairment is common in patients with mtDNA defects, the spectrum and pathophysiology of the hearing loss is not well characterised. We therefore studied the relationship between cochlear and brainstem auditory function in 23 patients harbouring a range of different mtDNA mutations. Based upon the pure tone audiogram, patients fell into three distinct groups: (i) normal hearing, (ii) mild to moderate predominantly high frequency hearing loss, and (iii) severe or profound hearing loss at all frequencies. Within this study group only certain genetic defects were associated with hearing loss, and for individuals harbouring the A3243G point mutation, the severity of the hearing loss correlated with the percentage level of mutated mtDNA (mutation load) in skeletal muscle. The 10 patients who had a moderate hearing loss or less had normal brainstem auditory evoked responses and MRI, but it was not possible to interpret the brainstem auditory evoked responses in 13 patients with severe hearing loss. Otoacoustic emissions were absent in patients with a moderate or more severe hearing loss. These findings are consistent with a predominantly cochlear origin for the hearing deficit, which is determined by the precise genetic defect and the percentage mutation load.

Become a Member

Become a Cicada member
For only A$10 for life, you will receive a copy of Buzz magazine and can attend events.

Latest News

VCNT - Visitors

Today 57

Yesterday 97

Week 154

Month 947

All 76673

Currently are 28 guests and no members online

Kubik-Rubik Joomla! Extensions

Deafblindness

Here is a link to Deafblindness support and information.
They are based in Western Australia and supported by Senses Australia.

Hear For You logo

 

 

 

Hear For You web site

Vision Statement: “For all young people who
are deaf to reach their potential in life.”

Go to top
JSN Boot template designed by JoomlaShine.com
Web Analytics