June 2019 Phys.Org

3 D ear

Using advanced techniques at the Canadian Light Source (CLS) at the University of Saskatchewan, scientists have created three-dimensional images of the complex interior anatomy of the human ear, information that is key to improving the design and placement of cochlear implants. "With the images, we can now see the relationship between the cochlear implant electrode and the soft tissue, and we can design electrodes to better fit the cochlea," said Dr. Helge Rask-Andersen, senior professor at Uppsala University in Sweden. "The technique is fantastic and we can now assess the human inner ear in a very detailed way.” By imaging the soft and bony structures of the inner ear with implant electrodes in place, Rask-Andersen said the researchers were able to discover what the auditory nerve looks like in three dimensions, and to learn how cochlear implant electrodes behave inside the cochlea. This is very important when cochlear implants are considered for people with limited hearing. "When we operate on patients with some residual hearing, we must be extremely atraumatic; the electrode must be very soft and inserted with no trauma. Its location inside the cochlea must be optimal, meaning it should not perforate any membranes and it should also be away from the vibrating membrane filtering the low frequencies that are often preserved in the patient."

The research, conducted with colleagues from Western University and published in Ear and Hearing, the official journal of the American Auditory Society, provides information that can be used to assess electrode insertion depths and stimulation strategies as well as to create exact frequency maps for optimal stimulation of the auditory nerve.

Detailed visualisation of the inner ear also creates opportunities to explore potential remedies for other afflictions, he said. One that is of particular interest to Rask-Andersen is Meniere's disease, which causes pressure, severe dizziness, hearing loss and a ringing or roaring noise. "The next steps in the research will be to look at the anatomy of the fluid-draining pathways important to understanding Meniere's disease," said Rask-Andersen.

Become a Member

Become a Cicada member
For only A$10 for life, you will receive a copy of Buzz magazine and can attend events.

Latest News

VCNT - Visitors

Today 9

Yesterday 51

Week 310

Month 1046

All 36765

Currently are 25 guests and no members online

Kubik-Rubik Joomla! Extensions

Deafblindness

Here is a link to Deafblindness support and information.
They are based in Western Australia and supported by Senses Australia.

Hear For You logo

 

 

 

Hear For You web site

Vision Statement: “For all young people who
are deaf to reach their potential in life.”

Go to top
JSN Boot template designed by JoomlaShine.com
Web Analytics